目的 为了寻找抗菌候选化合物,一系列噻吩磺酰胺类膦酸酯衍生物被设计合成。方法 首先,以芳香醛、醋酸铵、亚磷酸二乙酯和Al(OTf)3为反应原料,采用无溶剂一锅法制备中间体Ⅰ;然后,在碱性离子液体OH条件下,中间体Ⅰ与磺酰氯反应制备目标化合物;并采用两倍稀释法对目标物进行体外抗菌活性测试。结果 合成了12个目标化合物,经1H-NMR、13C-NMR和MS确认结构;抗菌活性测试结果显示,该类衍生物对所测革兰阳性菌和革兰阴性菌均有不同程度的抑制活性,尤以目标物Ⅱe、Ⅱk的抗菌活性最为突出,其中前者对金黄色葡萄球菌(S. aureus)、大肠埃希菌(E. coli)、耐甲氧西林金黄色葡萄球菌(MRSA)及耐氟喹诺酮类大肠杆菌(MREC)的MIC分别为32、64、32和128 μg·mL-1,后者对S. aureus、E. coli、MRSA及MREC的MIC分别为16、64、32和64 μg·mL-1,抗菌活性明显优于对照药磺胺嘧啶,接近于对照药加替沙星。结论 该类衍生物具有潜在的抗菌活性,值得进一步结构优化和深入研究。
Abstract
OBJECTIVE To design and synthsize a series of novel phosphonate derivatives. METHODS First, the intermediates of aminophosphonate was prepared by solvent-free one-pot method using aromatic aldehyde, ammonium acetate, diethyl phosphite and Al(OTf)3 as raw materials. Then, using basic ionic liquid OH as catalyst, the target compounds were synthesized by the reaction of intermediate with sulfonyl chloride. And the antibacterial activities of the products were evaluated by the agar dilution method. RESULTS Twelve title compounds were synthesized, and their structures were clearly established by 1H-NMR, 13C-NMR and MS. The results showed that the derivatives have different inhibitory activities against Gram-positive bacteria and Gram-negative bacteria, especially the compounds Ⅱe and Ⅱk showed better activity, the MIC of the former for S.aureus, E. coli, MRSA and MREC was 32, 64, 32, and 128 μg·mL-1, respectively, and the MIC of the latter was 16, 64, 32, and 64 μg·mL-1, respectively. Its antibacterial activities were significantly better than that of the control drug sulfadiazine, and close to that of gatifloxacin. CONCLUSION These derivatives have potential antibacterial activity, which is worth for further structural optimization and study.
关键词
磺胺 /
噻吩 /
膦酸酯 /
合成 /
抗菌活性
{{custom_keyword}} /
Key words
sulfanilamide /
thiophene /
phosphonate /
synthesis /
antibacterial activity
{{custom_keyword}} /
中图分类号:
R914
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU C, BAYER A, COSGROVE S E, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children[J]. Clin Infect Dis, 2011, 52(3):282-292.
[2] LEIBLER J H, LEON C, CARDOSO L J P, et al. Prevalence and risk factors for MRSA nasal colonization among persons experiencing homelessness in Boston, MA[J]. J Med Microbiol, 2017, 66(8):1183-1188.
[3] BALIBAR C J. Antibacterial Leads Targeting Isoprenoid Biosynthesis[M]. In:Antibiotic Drug Discovery, London: Royal Society of Chemistry, 2017: 204-255.
[4] YANG J Q, MA J, CHE W L, et al. Microwave-assisted synthesis and antitumor activity of salicylacyloxy phosphonate derivatives[J]. Chin J Org Chem(有机化学), 2014, 34(12):2566-2571.
[5] YANG J Q, SONG B A, BHADURY P S, et al. Synthesis and antiviral bioactivities of 2-cyano-3-substituted-amino(phenyl) methylphosphonylacrylates (acrylamides) containing alkoxyethyl moieties.[J]. J Agric Food Chem, 2010, 58(5):2730-2735.
[6] PHILLIPS A M F, BARROS M T, PACHECO M, et al. Synthesis and biological evaluation of α-hydroxyalkylphosphonates as new antimicrobial agents[J]. Bioorg Med Chem Lett, 2014, 24(1):49-53.
[7] SUBEDI Y P, ALFINDEE M N, SHRESTHA J P, et al. Synthesis and biological activity investigation of azole and quinone hybridized phosphonates[J]. Bioorg Med Chem Lett, 2018, 28(18):3034-3037.
[8] BARTEE D, SANDERS S, PHILLIPS P D, et al. Enamideprodrugs of acetyl phosphonate DXP synthase inhibitors as potent antibacterial agents[J]. ACS Infect Dis, 2019, 5(3):406-417.
[9] PLAISANCE K I, DRUSANO G L, FORREST A, et al. Pharmacokinetic evaluation of two dosage regimens of clindamycin phosphate[J]. Antimicrob Agents Chemother, 1989, 33(5):618-620.
[10] KISGEN J J, MANSOUR H, UNGER N R, et al. Tedizolid: a new oxazolidinone antimicrobial[J]. Am J Health Syst Pharm, 2014, 71(8):621-633.
[11] YANG J Q, HU Y W, GU Q, et al. Synthesis and antibacterial activities of novel phosphonate derivatives containing quinolinone moiety[J]. Chin J Org Chem(有机化学), 2014, 34(4):829-834.
[12] YANG J Q, CHEW L, WANG W, et al. Synthesis and antibacterial activity of novel 7-phosphoryl quinolone derivatives [J]. Chin Pharm J (中国药学杂志), 2019, 54(2):86-90.
[13] YANG J Q, ZHAO S X, AN J L, et al. Synthesis and bioactivity of novel ester derivatives of rhein [J]. Chin Pharm J (中国药学杂志), 2019,54(15):1216-1220.
[14] HE S C, PONMANI J, AVULA S R, et al. Recent advance in sulfonamide-based medicinal chemistry[J]. Sci Sin Chim(中国科学:化学), 2016, 46(9):823-847.
[15] KAWAI T, KAZUHIKO I, TAKAYA N, et al. Sulfonamide-based non-alkyne LpxC inhibitors as Gram-negative antibacterial agents[J]. Bioorg Med Chem Lett, 2017, 27(4):1045-1049.
[16] MISHRA R, SACHAN N, KUMAR N, et al. Thiophenescaffold as prospective antimicrobial agent: a review[J]. J Heterocyclic Chem, 2018, 55(9):2019-2034.
[17] ERLANSON D A, FESIK S W, HUBBARD R E, et al. Twenty years on: the impact of fragments on drug discovery[J]. Nat Rev Drug Discov, 2016, 15(9):605-619.
[18] SOBHANI S, TASHRIFI Z. Al(OTf)3 as an efficient catalyst for one-pot synthesis of primary diethyl 1-aminophosphonates under solvent-free conditions[J]. Synthetic Commun, 2008, 39(1):120-131.
[19] SHEN G X. Microbiology and Immunology(微生物和免疫学)[M]. Beijing:People′s Medical Publishing House, 2007:326-328.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
贵州省科技厅国际合作项目资助(黔科合外G 字7013);贵州省中医药管理局中医药、民族医药科学技术研究项目资助(QZYY085);遵义市汇川区科技局资助项目资助(E-123)
{{custom_fund}}